Entrer un problème...
Algèbre linéaire Exemples
[123456789]
Étape 1
Étape 1.1
Perform the row operation R2=R2-4R1 to make the entry at 2,1 a 0.
Étape 1.1.1
Perform the row operation R2=R2-4R1 to make the entry at 2,1 a 0.
[1234-4⋅15-4⋅26-4⋅3789]
Étape 1.1.2
Simplifiez R2.
[1230-3-6789]
[1230-3-6789]
Étape 1.2
Perform the row operation R3=R3-7R1 to make the entry at 3,1 a 0.
Étape 1.2.1
Perform the row operation R3=R3-7R1 to make the entry at 3,1 a 0.
[1230-3-67-7⋅18-7⋅29-7⋅3]
Étape 1.2.2
Simplifiez R3.
[1230-3-60-6-12]
[1230-3-60-6-12]
Étape 1.3
Multiply each element of R2 by -13 to make the entry at 2,2 a 1.
Étape 1.3.1
Multiply each element of R2 by -13 to make the entry at 2,2 a 1.
[123-13⋅0-13⋅-3-13⋅-60-6-12]
Étape 1.3.2
Simplifiez R2.
[1230120-6-12]
[1230120-6-12]
Étape 1.4
Perform the row operation R3=R3+6R2 to make the entry at 3,2 a 0.
Étape 1.4.1
Perform the row operation R3=R3+6R2 to make the entry at 3,2 a 0.
[1230120+6⋅0-6+6⋅1-12+6⋅2]
Étape 1.4.2
Simplifiez R3.
[123012000]
[123012000]
Étape 1.5
Perform the row operation R1=R1-2R2 to make the entry at 1,2 a 0.
Étape 1.5.1
Perform the row operation R1=R1-2R2 to make the entry at 1,2 a 0.
[1-2⋅02-2⋅13-2⋅2012000]
Étape 1.5.2
Simplifiez R1.
[10-1012000]
[10-1012000]
[10-1012000]
Étape 2
The pivot positions are the locations with the leading 1 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11 and a22
Pivot Columns: 1 and 2
Étape 3
The rank is the number of pivot columns.
2